Uni Passau

OPUS - Passau

Bibliographische Daten und PDF-Volltexte aus der Universität Passau
... die Wissenschaft der Hochschule sichtbar machen!

Home Suchen Melden Veröffentlichen Hilfe Kontakt
OPUS-Frontdoor

Xiu, Xingqiang

Non-commutative Gröbner Bases and Applications


Open Access: Freier Zugang zum Volltext!

pdf-Format:
Dokument 1.pdf (1.251 KB)

Bookmark bei Connotea Bookmark bei del.icio.us
SWD-Schlagwörter: Gröbner-Basis , Assoziativer Ring , Endlich erzeugter Modul , Gruppentheorie
Freie Schlagwörter (Englisch): non-commutative polynomial , non-commutative Gröbner basis , applications , Gebauer-Möller , optimization
Beteiligte Einrichtung: Sonstiger Autor der Fakultät für Informatik und Mathematik
Fakultät: Fakultät für Informatik und Mathematik
DDC-Sachgruppe: Mathematik
Dokumentart: Dissertation
Hauptberichter: Kreuzer, Martin (Prof. Dr.)
Sprache: Englisch
Tag der mündlichen Prüfung: 23.07.2012
Erstellungsjahr: 2012
Publikationsdatum: 25.07.2012
Kurzfassung auf Englisch: Commutative Gröbner bases have a lot of applications in theory and practice, because they have many nice properties, they are computable, and there exist many efficient improvements of their computations. Non-commutative Gröbner bases also have many useful properties. However, applications of non-commutative Gröbner bases are rarely considered due to high complexity of computations. The purpose of this study was to improve the computation of non-commutative Gröbner bases and investigate the applications of non-commutative Gröbner bases. Gröbner basis theory in free monoid rings was carefully revised and Gröbner bases were precisely characterized in great detail. For the computations of Gröbner bases, the Buchberger Procedure was formulated. Three methods, say interreduction on obstructions, Gebauer-Möller criteria, and detecting redundant generators, were developed for efficiently improving the Buchberger Procedure. Further, the same approach was applied to study Gröbner basis theory in free bimodules over free monoid rings. The Buchberger Procedure was also formulated and improved in this setting. Moreover, J.-C. Faugere's F4 algorithm was generalized to this setting. Finally, many meaningful applications of non-commutative Gröbner bases were developed. Enumerating procedures were proposed to semi-decide some interesting undecidable problems. All the examples in the thesis were computed using the package gbmr of the computer algebra system ApCoCoA. The package was developed by the author. It contains dozens of functions for Gröbner basis computations and many concrete applications. The package gbmr and a collection of interesting examples are available at http://www.apcocoa.org/.
Lizenz: Lizenz-Logo  Veröffentlichungsvertrag für Publikationen ohne Print on Demand


Lizenz

URN: http://nbn-resolving.de/urn:nbn:de:bvb:739-opus-26827
URL dieser Seite: http://www.opus-bayern.de/uni-passau/volltexte/2012/2682/


Home Suchen Melden Veröffentlichen Hilfe Kontakt
  OpenAccess logo   OAI2.0 logo   © Universitätsbibliothek Passau · Innstrasse 29 · 94032 Passau 
Tel. (0851) 509 1645 · Fax (0851) 509 1602 ·  Mail opus@uni-passau.de
22.10.10