Uni Passau

OPUS - Passau

Bibliographische Daten und PDF-Volltexte aus der Universität Passau
... die Wissenschaft der Hochschule sichtbar machen!

Home Suchen Melden Veröffentlichen Hilfe Kontakt
OPUS-Frontdoor

Dietz, Sebastian

Autoregressive Neural Network Processes - Univariate, Multivariate and Cointegrated Models with Application to the German Automobile Industry

Autoregressive Neuronale Netze - Univariate, Multivariate und Kointegrierte Modelle mit einer Anwendung aus dem Bereich der deutschen Automobilindustrie


Open Access: Freier Zugang zum Volltext!

pdf-Format:
Dokument 1.pdf (6.016 KB)

Bookmark bei Connotea Bookmark bei del.icio.us
SWD-Schlagwörter: Nichtlineare Zeitreihenanalyse , Zeitreihenanalyse , Ökonometrie , Nichtlineare Optimierung
Freie Schlagwörter (Englisch): Nonlinear Time Series Analysis , Neural Networks , Nonlinear Optimization , Econometrics
Journal of Economics Literature Classification: C32 , C45
Beteiligte Einrichtung: Sonstiger Autor der Wirtschaftswissenschaftlichen Fakultät
Fakultät: Wirtschaftswissenschaftliche Fakultät
DDC-Sachgruppe: Statistik
Dokumentart: Dissertation
Hauptberichter: Moosmüller, Gertrud (Prof. Dr.)
Sprache: Englisch
Tag der mündlichen Prüfung: 18.05.2011
Erstellungsjahr: 2011
Publikationsdatum: 08.06.2011
Kurzfassung auf Englisch: Prediction of economic variables is a basic component not only for economic models, but also for many business decisions. Nevertheless it is difficult to produce accurate predictions in times of economic crises, which cause nonlinear effects in the data. In this dissertation a nonlinear model for analysis of time series with nonlinear effects is introduced. Linear autoregressive processes are extended by neural networks to overcome the problem of nonlinearity. This idea is based on the universal approximation property of single hidden layer feedforward neural networks of Hornik (1993). Univariate Autoregressive Neural Network Processes (AR-NN) as well as Vector Autoregressive Neural Network Processes (VAR-NN) and Neural Network Vector Error Correction Models (NN-VEC) are introduced. Various methods for variable selection, parameter estimation and inference are discussed. AR-NN's as well as a NN-VEC are used for prediction and analysis of the relationships between 4 variables related to the German automobile industry: The US Dollar to Euro exchange rate, the industrial output of the German automobile industry, the sales of imported cars in the USA and an index of shares of German automobile manufacturing companies. Prediction results are compared to various linear and nonlinear univariate and multivariate models.
Lizenz: Lizenz-Logo  Veröffentlichungsvertrag für Publikationen mit Print on Demand


Lizenz

URN: http://nbn-resolving.de/urn:nbn:de:bvb:739-opus-22524
URL dieser Seite: http://www.opus-bayern.de/uni-passau/volltexte/2011/2252/


Home Suchen Melden Veröffentlichen Hilfe Kontakt
  OpenAccess logo   OAI2.0 logo   © Universitätsbibliothek Passau · Innstrasse 29 · 94032 Passau 
Tel. (0851) 509 1645 · Fax (0851) 509 1602 ·  Mail opus@uni-passau.de
22.10.10