Uni Passau

OPUS - Passau

Bibliographische Daten und PDF-Volltexte aus der Universität Passau
... die Wissenschaft der Hochschule sichtbar machen!

Home Suchen Melden Veröffentlichen Hilfe Kontakt
OPUS-Frontdoor

Rabl, Tilmann

Efficiency in Cluster Database Systems - Dynamic and Workload-Aware Scaling and Allocation

Effizienz in Cluster-Datenbanksystemen - Dynamische und Arbeitslastberücksichtigende Skalierung und Allokation


Open Access: Freier Zugang zum Volltext!

pdf-Format:
Dokument 1.pdf (7.333 KB)

Bookmark bei Connotea Bookmark bei del.icio.us
SWD-Schlagwörter: Verteiltes Datenbanksystem , Cluster <Rechnernetz> , Allokation , Skalierung , Effizienzsteigerung
Freie Schlagwörter (Deutsch): Clusterdatenbanksystem
Freie Schlagwörter (Englisch): Dynamic Allocation , Autonomic Scaling , Cluster Database System
CCS - Klassifikation: C.2.4 Dist
Beteiligte Einrichtung: Mitarbeiter Lehrstuhl/Einrichtung der Fakultät für Informatik und Mathematik
Fakultät: Fakultät für Informatik und Mathematik
DDC-Sachgruppe: Informatik
Dokumentart: Dissertation
Hauptberichter: Kosch, Harald (Prof. Dr.)
Sprache: Englisch
Tag der mündlichen Prüfung: 02.12.2011
Erstellungsjahr: 2011
Publikationsdatum: 08.12.2011
Kurzfassung auf Englisch: Database systems have been vital in all forms of data processing for a long time. In recent years, the amount of processed data has been growing dramatically, even in small projects. Nevertheless, database management systems tend to be static in terms of size and performance which makes scaling a difficult and expensive task. Because of performance and especially cost advantages more and more installed systems have a shared nothing cluster architecture. Due to the massive parallelism of the hardware programming paradigms from high performance computing are translated into data processing. Database research struggles to keep up with this trend. A key feature of traditional database systems is to provide transparent access to the stored data. This introduces data dependencies and increases system complexity and inter process communication. Therefore, many developers are exchanging this feature for a better scalability. However, explicitly managing the data distribution and data flow requires a deep understanding of the distributed system and reduces the possibilities for automatic and autonomic optimization. In this thesis we present an approach for database system scaling and allocation that features good scalability although it keeps the data distribution transparent.

The first part of this thesis analyzes the challenges and opportunities for self-scaling database management systems in cluster environments. Scalability is a major concern of Internet based applications. Access peaks that overload the application are a financial risk. Therefore, systems are usually configured to be able to process peaks at any given moment. As a result, server systems often have a very low utilization. In distributed systems the efficiency can be increased by adapting the number of nodes to the current workload. We propose a processing model and an architecture that allows efficient self-scaling of cluster database systems. In the second part we consider different allocation approaches. To increase the efficiency we present a workload-aware, query-centric model. The approach is formalized; optimal and heuristic algorithms are presented. The algorithms optimize the data distribution for local query execution and balance the workload according to the query history. We present different query classification schemes for different forms of partitioning. The approach is evaluated for OLTP and OLAP style workloads. It is shown that variants of the approach scale well for both fields of application. The third part of the thesis considers benchmarks for large, adaptive systems. First, we present a data generator for cloud-sized applications. Due to its architecture the data generator can easily be extended and configured. A key feature is the high degree of parallelism that makes linear speedup for arbitrary numbers of nodes possible. To simulate systems with user interaction, we have analyzed a productive online e-learning management system. Based on our findings, we present a model for workload generation that considers the temporal dependency of user interaction.
Kurzfassung auf Deutsch: Datenbanksysteme sind seit langem die Grundlage für alle Arten von Informationsverarbeitung. In den letzten Jahren ist das Datenaufkommen selbst in kleinen Projekten dramatisch angestiegen. Dennoch sind viele Datenbanksysteme statisch in Bezug auf ihre Kapazität und Verarbeitungsgeschwindigkeit was die Skalierung aufwendig und teuer macht. Aufgrund der guten Geschwindigkeit und vor allem aus Kostengründen haben immer mehr Systeme eine Shared-Nothing-Architektur, bestehen also aus unabhängigen, lose gekoppelten Rechnerknoten. Da dieses Konstruktionsprinzip einen sehr hohen Grad an Parallelität aufweist, werden zunehmend Programmierparadigmen aus dem klassischen Hochleistungsrechen für die Informationsverarbeitung eingesetzt. Dieser Trend stellt die Datenbankforschung vor große Herausforderungen. Eine der grundlegenden Eigenschaften traditioneller Datenbanksysteme ist der transparente Zugriff zu den gespeicherten Daten, der es dem Nutzer erlaubt unabhängig von der internen Organisation auf die Daten zuzugreifen. Die resultierende Unabhängigkeit führt zu Abhängigkeiten in den Daten und erhöht die Komplexität der Systeme und der Kommunikation zwischen einzelnen Prozessen. Daher wird Transparenz von vielen Entwicklern für eine bessere Skalierbarkeit geopfert. Diese Entscheidung führt dazu, dass der die Datenorganisation und der Datenfluss explizit behandelt werden muss, was die Möglichkeiten für eine automatische und autonome Optimierung des Systems einschränkt. Der in dieser Arbeit vorgestellte Ansatz zur Skalierung und Allokation erhält den transparenten Zugriff und zeichnet sich dabei durch seine vollständige Automatisierbarkeit und sehr gute Skalierbarkeit aus.

Im ersten Teil dieser Dissertation werden die Herausforderungen und Chancen für selbst-skalierende Datenbankmanagementsysteme behandelt, die in auf Computerclustern betrieben werden. Gute Skalierbarkeit ist eine notwendige Eigenschaft für Anwendungen, die über das Internet zugreifbar sind. Lastspitzen im Zugriff, die die Anwendung überladen stellen ein finanzielles Risiko dar. Deshalb werden Systeme so konfiguriert, dass sie eventuelle Lastspitzen zu jedem Zeitpunkt verarbeiten können. Das führt meist zu einer im Schnitt sehr geringen Auslastung der unterliegenden Systeme. Eine Möglichkeit dieser Ineffizienz entgegen zu steuern ist es die Anzahl der verwendeten Rechnerknoten an die vorliegende Last anzupassen. In dieser Dissertation werden ein Modell und eine Architektur für die Anfrageverarbeitung vorgestellt, mit denen es möglich ist Datenbanksysteme auf Clusterrechnern einfach und effizient zu skalieren. Im zweiten Teil der Arbeit werden verschieden Möglichkeiten für die Datenverteilung behandelt. Um die Effizienz zu steigern wird ein Modell verwendet, das die Lastverteilung im Anfragestrom berücksichtigt. Der Ansatz ist formalisiert und optimale und heuristische Lösungen werden präsentiert. Die vorgestellten Algorithmen optimieren die Datenverteilung für eine lokale Ausführung aller Anfragen und balancieren die Last auf den Rechnerknoten. Es werden unterschiedliche Arten der Anfrageklassifizierung vorgestellt, die zu verschiedenen Arten von Partitionierung führen. Der Ansatz wird sowohl für Onlinetransaktionsverarbeitung, als auch Onlinedatenanalyse evaluiert. Die Evaluierung zeigt, dass der Ansatz für beide Felder sehr gut skaliert. Im letzten Teil der Arbeit werden verschiedene Techniken für die Leistungsmessung von großen, adaptiven Systemen präsentiert. Zunächst wird ein Datengenerierungsansatz gezeigt, der es ermöglicht sehr große Datenmengen völlig parallel zu erzeugen. Um die Benutzerinteraktion von Onlinesystemen zu simulieren wurde ein produktives E-learningsystem analysiert. Anhand der Analyse wurde ein Modell für die Generierung von Arbeitslasten erstellt, das die zeitlichen Abhängigkeiten von Benutzerinteraktion berücksichtigt.
Lizenz: Lizenz-Logo  Veröffentlichungsvertrag für Publikationen ohne Print on Demand


Lizenz

URN: http://nbn-resolving.de/urn:nbn:de:bvb:739-opus-25821
URL dieser Seite: http://www.opus-bayern.de/uni-passau/volltexte/2011/2582/


Home Suchen Melden Veröffentlichen Hilfe Kontakt
  OpenAccess logo   OAI2.0 logo   © Universitätsbibliothek Passau · Innstrasse 29 · 94032 Passau 
Tel. (0851) 509 1645 · Fax (0851) 509 1602 ·  Mail opus@uni-passau.de
22.10.10